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A method is presented for constructing a stochastic return map from a 
stochastic differential equation containing a locally stable limit cycle and small- 
amplitude [O(e)] additive Gaussian colored noise. The construction is valid 
provided the correlation time is O(e) or O(1). The effective noise in the return 
map has nonzero O(~ z) mean and is state dependent. The method is applied to 
a model dynamical system, illustrating how the effective noise in the return map 
depends on both the original noise process and the local deterministic dynamics. 
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1. I N T R O D U C T I O N  

Stochastic differential equations (SDEs) have been used to describe a wide 
variety of systems in physics, chemistry, and biology. (1 5~ The random 
character of solutions to such equations often represents unpredictability in 
the physical system due to the weak coupling of the system to its environ- 
ment. Alternatively, randomness may represent uncertainty due to physical 
processes not explicitly included in the model. In both cases the charac- 
teristics of the noise process can only be determined by physical considera- 
tions. For example, if the noise source is independent of the state of the 
system, then additive noise is appropriate; otherwise, multiplicative or 
state-dependent noise is required. The characteristics of the noise process 
play an important role in determining the system's behavior. State- 
dependent noise, for example, introduces the possibility of nonequilibrium 
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noise-induced transitions analogous to equilibrium phase transitions. (4'51 
A qualitatively correct description of the dynamics of a physical system 
requires that the noise process be correctly chosen. 

Many authors have studied the behavior of SDEs containing limit 
cycles, often in the context of population biology or solid-state physics. (6-13) 
One technique which has proved useful for studying deterministic systems 
with limit cycles is to construct a return map for the dynamics using a 
Poincar6 surface of section. (14) In constructing a return map, continuous 
flow in the n-dimensional phase space of the system is reduced to discrete 
jumps in an (n - 1)-dimensional oriented surface X: the successive properly 
oriented intersections of the phase space trajectory with X make up the 
discrete trajectory of the return map. Since the phase space trajectory of a 
system of SDEs is continuous, it is possible to construct a stochastic return 
map. The dynamics of noisy maps has been the object of many 
studies, (~5-21~ but the character of the noise included in these maps has so 
far been chosen in an ad hoc manner. 

In this paper we address the question of how one determines the 
character of the noise in a stochastic return map. When the map results 
from the reduction of an SDE, the answer is that the noise process is deter- 
mined from physical considerations at the level of the SDE, and then 
carried through the reduction process. We shall use a Poincar6 surface of 
section to explicitly construct a stochastic return map from an SDE whose 
corresponding ordinary differential equation (ODE) contains a limit cycle. As 
we shall see, the effective noise which enters into the return map is significantly 
more complex than the simple noise process we put into the SDE. 

One important aspect of SDEs with limit cycles is the phenomenon of 
phase diffusionJ 21) A limit cycle F =  {7(0} of an autonomous dynamical 
system necessarily has a neutral eigenvalue in the direction tangent to F 
reflecting the fact that 7(t + to) describes the same limit cycle. As a result, 
noise components tangent to the limit cycle cause perturbations which are 
not damped by the deterministic dynamics, and the system exhibits a 
random walk in phase. An ensemble of systems starting in phase on the 
limit cycle will thus diffuse to cover the entire limit cycle. From the view- 
point of an individual trajectory, the time for the system to return to a 
Poincar6 surface is a stochastic quantity depending on the noise realization. 
An externally forced system containing a limit cycle will also have such a 
neutral eigenvalue and exhibit phase diffusion provided the limit cycle is 
not phase-locked. 

In a study of the effects of a rapidly fluctuating environment on 
systems of interacting species, White (6) constructed an asymptotic expan- 
sion similar to that described below, but used the noise correlation time 
rather than the noise amplitude as a small parameter. Included in his work 
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is consideration of a limit cycle in two dimensions. He finds that the 
variance of the phase grows linearly, and calculates the variance of the dis- 
tance from the limit cycle. The linear growth in the variance of the phase 
is a manifestation of phase diffusion. 

In Section 2 we explicitly construct the stochastic return map for a 
system of SDEs containing small-amplitude additive Gaussian colored 
noise. The corresponding ODEs contain a locally stable limit cycle with 
period T. If the system starts in the neighborhood of the limit cycle, it will 
remain there, on the average, for a very long time. Depending on the global 
structure of phase space, the system may eventually escape from the limit 
cycle and visit other attractors. (9 12.21) While the system is near the limit 
cycle it is possible to construct a locally valid stochastic return map by 
asymptotically expanding about the limit cycle in powers of the small noise 
amplitude e. The effective noise entering into the return map depends 
explicitly on both the deterministic dynamics evaluated on the limit cycle 
and on the details of the original noise process. The success of this expan- 
sion requires that both the time-integrated amplitude and the instan- 
taneous amplitude of the noise be small. The requirement that the 
instantaneous amplitude be small implies that the correlation time Zc be 
at least O(e). Specifically, we consider here the two cases, rc =O(1) and 
Zc = O(e). The method used by White, (6) on the other hand, is valid in the 
limit of zero correlation time, where the instantaneous noise amplitude is 
large and the expansion used here breaks down. 

We calculate the moments of the first-order effective noise in Section 3. 
The calculation is complicated by the fact that the first-order effective noise 
depends on the original noise process evaluated at stochastic times. This 
randomness in the argument of the noise arises from the stochastic time for 
the trajectory to return to the Poincar6 surface of section. We show that 
although the original noise entering the SDE has zero mean, the effective 
noise in the return map has nonzero O(e 2) mean. In addition, for the case 
where the original noise has O(1) correlation time, we derive explicit 
expressions for both the mean and mean-square of the first-order effective 
noise. 

In Section 4 we apply the method to a model 2-dimensional dynamical 
system to explore the interactions between the original noise process and 
specific features in the deterministic dynamics. The dynamical system con- 
tains a limit cycle with unit radius and constant angular frequency, and is 
perturbed by small-amplitude isotropic additive Gaussian colored noise. 

We note, following L. Arnold, that the stability of a limit cycle in an 
SDE may be characterized rigorously by the spectrum of Liapunov 
exponents. (22) These exponents are nonstochastic and have the usual 
properties of Liapunov exponents for deterministic systems. Although we 
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do not pursue this approach here, we note that our setting is equivalent to 
supposing that all but one Liapunov exponent are negative, with the 
remaining one being zero. 

2. C O N S T R U C T I O N  OF A S T O C H A S T I C  R E T U R N  M A P  

Consider an n-dimensional set of SDEs with small-amplitude additive 
Gaussian colored noise: 

2 = f ( x ) + e ~ ( t ) ,  x , ~ ( t ) E ~  ~, e ~ l  (1) 

In the following, Latin subscripts shall refer to components in ~ ,  and the 
Einstein summation convention will be used. The Gaussian colored noise 
process is completely described by its first two moments: (23) 

(~(0)=0, (r162 D~ = _ _  e-I~ ,21/~ (2) 
"/7 c 

The noise process depends on two parameters: the correlation time zc and 
the noise strength matrix D. The matrix D is referred to as the noise 
strength, as it is the time-integrated mean-square amplitude of the noise. 
The instantaneous mean-square amplitude is given by the matrix D/%. In 
the limit zc--> 0, Gaussian colored noise becomes Gaussian white noise 
with mean-square amplitude 2D. As white noise is delta correlated, the 
instantaneous amplitude is infinite, and the time-integrated amplitude is the 
strength of the delta function. We shall consider noise processes in which 
the correlation time is finite, but no greater than O(1). 

Assume that the corresponding set of ODEs obtained when a = 0  
contains a locally stable limit cycle F={7( t )}  of period T~O(1) :  
7( t+ T ) =  7(0- The dynamics near F shall be described in terms of the 
distance y from a "tracking point" on F with phase t o : 

y(t) = x(t) - 7(t + to), y(t) ~ 0(~) (3) 

Due to phase diffusion, x(t) will drift out of phase with 7(t + to), causing 
y(t) to become large even though x(t) is still near F. (21) Here we avoid this 
problem by following y(t) only until it next pierces the Poincar6 surface 
in the appropriate direction, and choosing for the next iteration a new 
tracking point which once again starts out in phase with x(t). These 
statements are made more precise below. 

Equation (1) can be rewritten as 

pi( t )=J~( t )  y j ( t )+er  2) (4) 
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where J is the Jacobian matrix 

J0 (t) = 3f'  (x) (5) 

Equation (4) can be transformed into an integral equation using the 
Green's matrix 

fexp ~t,~ 2 dt'J(t'), tl >~ t2 
G(tl, t2)= ~0, tl < t2 (6) 

yielding 

y,(t)  = Go(t, 0) yj(0) + E dr G,j(t, r)  ~j(r) + o(~ 2) (7) 

In the definition of G, Eq. (6), the time-ordered exponential is implicit. The 
linearized deterministic time-T map is given by G(T, 0), which has one unit 
eigenvalue corresponding to motion tangent to F, and n - 1  eigenvalues 
with magnitude less than one corresponding to contraction onto F. 

We demand that the vector y(t) remain small over one period. As the 
deterministic limit cycle is stable, growth in y transverse to F can only 
occur due to the cumulative effect of the noise. In the direction parallel to 
F, growth in y appears as a phase shift, and may be due to both the deter- 
ministic dynamics and the noise. Since G(T, t)~ O(1) and y ( 0 ) ~  O(e), the 
deterministic phase shift over one period is small. The cumulative effect of 
the noise will be small provided (sufficient but not necessary) 

T T 

fo dt' G(T, t'). ~(t')~ fo dt' r 0(1) (8) 

The integrals in Eq. (8) are stochastic quantities, The question arises: what 
is the magnitude of a randomly fluctuating quantity? If the mean is zero, 
the magnitude is best estimated by the rms deviation of the quantity. If the 
mean is nonzero and larger than the rms deviation, then the magnitude is 
best estimated by the mean. The second integral in Eq. (8) is a random 
vector with zero mean; its size is thus best estimated by the sum of the rms 
deviations of its components: 

f~dt~(t)~O((f~dt l  fro dt2~i(t~)~i(t2)t 1/2) (9) 

If G contains off-diagonal elements, then the rms magnitude of the first 



868 Weiss and Knobloch 

integral in Eq. (8) has contributions from ~i~j, iCj. Interchanging the 
order of the ensemble average and the time integrals and using Eq. (2) 
results in 

I f~ dtl f~ dt2~(tl)~j(t2)) 1/2 = [2D~ T + 2Dur~(e- r/,, _ 1 ) ] 1/2 

(Du) ~/2 (10) 

Since Dij = ~c(~i(t) ~i(t)}, [D~] ~ �89 + Djj) (no sum on i, j); bounding 
the trace of D thus bounds every element Do.. Hence, for correlation times 
O(1) or smaller, the stochastic trajectory y(t) will, over one period, remain 
near the tracking point provided T r ( D ) ~  O(1) or smaller. In the following, 
we shall assume this is the case. 

The Poincar6 surface of section Zt0 is chosen to be the plane normal 
to F at 7(t0); each properly oriented intersection of the trajectory with S,0 
then occurs near 7(t0) with a stochastic time s ~ T between intersections. 
The projection operator P(to) takes vectors in R n into Z,n: 

Po(to) = 6 U - v i ( t o )  v j ( t o )  (11) 

where V(to) is the unit vector tangent to F at 7(to): 

f(7(to)) V(to) (12) 
If(y(to))l 

The geometry is shown in Fig. 1. We define the projection of G into Xto: 

G• t2) = P(to). 6 ( t l ,  t2) (13) 

We are interested in parameter values where the deterministic system is not 
near a bifurcation. The projection of the linearized deterministic time-T 
map, G~(T, 0), then has n -  1 eigenvalues with magnitude less than one. 
The vector V(to), the eigenvector of G(T, 0) with unit eigenvalue, lies in the 
null space of GZ(T, 0). 

Without loss of generality we may suppose that the initial condition 
x(0) is in S,0; then the vector x ( 0 ) -  7(to) is normal to V(to): 

[x(0) - y(to)]- V(to) = y(O). V(to) =- 0 (14) 

Intersections of the trajectory with Z,0 occur at times t = s such that 
x(s)-  7(to) is normal to V(to): 

[x(s)--7(to)].v(to)=Ey(s)+7(s+to)--y(to)].v(to)=O (15) 

As mentioned above, s ~ T. 
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Yl (T) 

o)Yl (T) 

v, to  

Z 
t o 

Fig. 1. Sketch of the surface of section Xt0 normal to the limit cycle F at 7(t0), the unit 
vector V(to) tangent to F at 7(t0), and the effect of the projection operator P(to) on the vector 
yl(T). 

In order  to construct  the return map,  we must  expand both y(t) and 
s in powers of  e. The lowest order part  of the return map is independent 
of the size of the correlat ion time, while the powers of e which appear  in 
the higher order terms do depend on the size of %. We shall thus focus on 
the lowest order par t  first. Expanding y(t) and s, 

y(t)  = Eye(t) + o(~) 

s = So + ~sl + o(e) 
(16) 

allows y(s) to be written as 

y(s) = ~y~(so) + o(~) 

fO s~ = eG(so, 0).  y l (0)  + ~ dt G(so, t). ~(t) + o(e) (17) 

and 7(s + to) as 

7(s + to) = 7(So + to) + eslf(Y(So + to)) + o(e) (18) 
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The intersection condition (15) can be solved at O(1) and 0(5) to obtain 

so= T 

S l Z  
V(to). y,(T) 

If(7(to))l 

(19) 

Thus, Sl, the first correction to the return time So= T, is the first-order 
distance out of the plane Xt0 after one period divided by the velocity at to. 

Let z(m) represent the vector in ~,0 corresponding to a particular 
intersection with the correct orientation. Then the return map is of the 
form 

z(m+ l)=F(z(m))+((m),  z (m) , ( (m)eN n-I (20) 

where F is a deterministic function of z, and ( is the effective noise. Let the 
time of the mth intersection be denoted by T(m), and let the time between 
intersections be 

s(m) = z(m + 1) - ~(m) (21) 

Note that r(m) is a stochastic quantity. To calculate F and ~, we set 
y(O) = z(m) and use the above formalism to calculate 

z(m + 1) = y(s(m)) + 7(s(m) + to) - 7(t0) (22) 

From the definition of s(m) in (21) and the fact that z(m)eXto, 
z(m + 1)eZt0. Thus, at each iteration of the map we reinitialize y by 
choosing 7(to) as the new tracking point, and then follow y once around F. 
Care must be taken to evaluate the noise process at the actual time, 
r(m) + t, rather than at the time since the previous intersection with Z',0. 
Expanding z in powers of e, 

z(m) = ezl(m) + o(~) (23) 

gives the first-order return map: 

zl(rn + 1) = P(to). yl (T)  (24) 

The deterministic part Fj(z(m)) is thus 

rl(z(m)) = G~(T, 0). zl(m) (25) 

while the first-order effective noise ffl is 

T 

~l(m) = fo dt GI(T, t). ~(v(m) + t) (26) 
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Due to the nature of the asymptotic expansion, F 1 and ~'1 are linear in zl 
and ~, respectively; higher order terms in F and ( will be nonlinear. Since 
the deterministic system is away from a bifurcation, Hartman's theorem (~4) 
guarantees the existence of a coordinate transformation linearizing the 
deterministic portion of the map F in some neighborhood of the fixed point 
z = 0 I x  = ~ ( t o ) ] .  

The first-order effective noise is independent of the present state, z(m), 
and depends explicitly on the original noise process over times r(m) to 
r(m) + T. Through r(m), which is itself a stochastic quantity, ff~ depends on 
the the entire history of the original noise process. The first-order effective 
noise is studied in some detail in the next section. 

To calculate higher order terms in the return map, one must extend 
the expansions (16) to include higher powers in e. As we shall see below, 
the powers of e which appear in the asymptotic expansions are determined 
by consistency considerations, and differ for correlation times with different 
magnitudes. We shall thus write the higher order terms using exponents 
1 < p~ < P2 ' " .  The expansion for the intersection time s is 

s = T+ esl + ~plspl  + 8p2sp2 Jv . �9 . (27) 

The expansion for y(s) is constructed from Eq. (7). Expanding around T in 
both the Green's matrix and the upper bound of the integrals, we obtain 

f d, y ( s ) = y ( T ) + ( s - T ) J ( O ) . y ( T ) + 8  ~(t)+O(82) (28) 

The first term in (28) arises from those terms in the expansion of (7) in 
which s is replaced everywhere by T. The second term in (28) results from 
the first term in the Taylor expansion of G(s, 0) and G(s, t') around s = T, 
with the upper bound on the integrals being T. The third term is the lowest 
order piece of the integrals from T to s. The Green's matrix does not 
appear in the third term because t is close to s and the lowest order piece 
of G(s, t) is the identity matrix. Using the expansion of s, Eq. (27), y(s) 
becomes 

y(s) = y( r )  + 8s 1 J(O). y( T) + ~P~smJ(O ) �9 y( T) 

~ T + CSl ~ T+ eSl + 8Plspl 
+e dt ~( t )+e dt ~(t)+ ... 

~T ~T  + 8s I 
(29) 

The integrals appearing in Eq. (29) have stochastic integrands and, 
since s is stochastic, stochastic bounds. To check on the consistency of the 
asymptotic expansion, we must know the magnitude of these integrals, 
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which requires knowledge of their moments. In general, calculating the 
moments of these integrals is difficult. In the Appendix we calculate the 
moments of the first integral in Eq. (29) and show that its magnitude is the 
same as that of a similar integral with deterministic bounds; we henceforth 
assume that the other integrals with stochastic bounds which also arise 
have the same order of magnitude as similar integrals with deterministic 
bounds. These integrals take the form 

I 
t 4- gqsq 

I= dt' ~(t') (30) 
t 

O(1). Our assumption is where both t and Sq may be stochastic and Sq 
that 

I~  O ( fs dt ' r (31) 

Since the mean of the integral on the right is zero, its magnitude is 
estimated by the rms deviation, which can be calculated in the same 
manner as Eq. (10). The result is 

( foq dtl f~q dt2~i(tl)~i(t2)l 1/2 

= [2Dijg q + 2Dgvc(e -~q/~c- 1)] 1/2 (32) 

If rc ~ O(eP), then using the Taylor expansion of the exponential in (32), 
the fact that T r ( D ) ~  O(1), and the assumption (31), we obtain 

O(eq/2)' P > q (33) IN (0(~ q p/2), p < q 

When p = q, both expressions in (33) reduce to o(~q/2). The first case, p > q, 
is just the familiar fact that the rms diffusion distance goes like the square 
root of the time when the correlation time is much shorter than the 
diffusion time. 

To satisfy the intersection condition (15), any term of order e p 
appearing in y(s) must be canceled by a term of the same order in 7(s + to). 
A term of order e p will only appear in the Taylor expansion of ~(s + to) if 
the asymptotic expansion of s has such a term. Through the integrals dis- 
cussed above, terms in the expansion of s generate terms in the expansion 
of y(s). This circularity gives rise to a consistency requirement, in which all 
terms generated by any term in the asymptotic expansion of y(s) must be 
the same order as terms already present in the expansion. 
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When z, ,-~O(1), integrals of the noise process over times of o(eq), 
q/> 0, are themselves O(eU), and the expansions for y and s contain only 
integer powers of e. If rc "-~ O(e), however, integrals of the noise process 
over O(e) times are O(el/2), and the fourth term in Eq. (29) is O(e3/2). 
Consistency then requires an E 3/2 term in the expansion of s, resulting in a 
term in the expansion of y containing an integral of the noise process over 
an O(e 3/2) time. This integral is O(e). In this way, one finds that the expan- 
sions for the case r c ~O(e )  are consistent if they contain half-integer 
powers of e. The form of the asymptotic expansions thus depends on the 
magnitude of re. 

Once the form of the expansions is settled, it is straightforward to 
solve the intersection condition (15) order by order, resulting in explicit 
expressions for spi, sp2, etc. Higher order corrections to the stochastic 
return map can then be obtained in the manner described above for the 
first-order map: set y ( 0 ) = z ( m )  and use Eq. (22) to calculate z(m + 1). For  
both rc N O ( l )  and r,. ,,~ O(e), .~2 [the coefficient of the O(e 2) part of the 
effective noise] depends quadratically on z~ and ~, and is thus state 
dependent and has nonzero mean. ~24~ 

When r~ ~ O(e 2) or smaller, the situation is quite different. As is the 
case when r,. ~ O(e), the integral of the noise process over an order-e time 
is o(el/2), which generates an order-e 3/2 term in the expansion of s. Now, 
however, e 3/2 >> r~ and the O(e 3/2) term generates a term of order e 7/4, which 
is still much greater than r~. This process continues ad infinitum, and the 
asymptotic expansion breaks down. We may think of this process of 
generating new terms as a mapping: terms of order eq~ "c c generate new 
terms of order ~,q', where q' = 1 + q/2. This map has a stable fixed point at 
q = 2; the generation of an infinite number of terms with new powers of e 
corresponds to the infinite number of iterations required to reach the fixed 
point from an initial condition at q = 1. The above formalism for construct- 
ing a stochastic return map thus breaks down when r,. ~ O(e2). 

We required earlier that the integrated amplitude of the noise term er 
be small, i.e., T r ( D ) ~  O(1) or smaller. Together with the new requirement 
that ~ ~ 0(~) or larger, we obtain a restriction on the instantaneous rms 
amplitude of ~, 

(~i(t) ~j(t)) 1/2 = (Do-/rc) 1/2~ 0(~ -1/2) or smaller (34) 

Since the noise entering into the SDE is er (34) is equivalent to requiring 
that the instantaneous rms amplitude of the noise term in the SDE be 
small, i.e., O(e 1/2) or smaller. Thus, the success of the technique presented 
above requires that both the instantaneous and the time-integrated rms 
amplitudes of the noise term in the SDE be small. 

822/58/5-6-6 
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3. THE FIRST-ORDER EFFECTIVE NOISE 

In this section we examine the first two moments of the first-order 
effective noise. From the definition of r Eq. (26), we see that the moments 
of the first-order effective noise depend on the moments of r t). 
When r c ~ O ( l )  the only small parameter is e and the lowest order 
contribution to the moments of ~(r(m)+ t) can be calculated in closed 
form. This is not the case when rc ~ O(a), when two small parameters are 
present. 

We first assume z,. ~O(1).  The chief difficulty in evaluating the 
moments of ~(r(m) + t) is that z(m) is itself a stochastic variable: 

z(m) = m T +  a(Sl(0 ) § ' ' "  § sl(m - 1)) + O(~ 2) (35) 

where the stochasticity arises through sl(m), 

V(to) . [ G ( T , O ) . z ~ ( m ) + f f  d t G ( T , t ) . ~ ( ~ ( m ) + t ) l  
sl(m) = -Jf(y( to))f  

(36) 

which, using Eq. (25) and (26), can be written as 

sl(m) = -- 
V(to) 

[f(7(to))t 
�9 [G(T, 0). [G• 0)] m. z,(0) 

T m I 

+ fo dt G(T, t). ~(r(m) + t) + 
n = O  

G(T, 0). [ 6 •  0) ]  ~ 

T ] 
"fo dt GX(T, t ) . ~ ( z ( m - n -  1)+ t) (37) 

With the aid of the delta function, r(m) can be removed from the argument 
of ~. Fourier transform of the delta function and Taylor series expansion 
of the resulting exponential allow ~(r(m)+ t) to be expressed as a poly- 
nomial in ~ and z(m): 

i 
oo 

~('c(m) + t) = dt' ~(t') 6(r(m) + t -  t') 
o o  

= 2--s dt' de) e i~ c) . . . .  ~=o T ~(t')(z(m))~ (38) 

We calculate the mean square of ~ first. Using Eq. (38) and (35), one 
obtains 
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(~(r(m) + tl) ~(r(n) + t2) ) 

1 foo foo f ~  f ~  =-4-~2 dt3 dt4 d(.o I dco 2 e'r~ i~ 
- -  o o  - - o o  o o  - -  :x3 

~o 
x ~ (ic~ (ic~ 

~./~=o c~!fl! (~(t3)~'(t4))(mT)~(nT)/~+O(e) (39) 

The average is now evaluated, and the above expansion into integrals and 
sums is easily reversed. The sums give the exponentials e"~mre ~o2"r, and the 
co integrals are once again delta functions. The result is 

D ,)rl/~c + O(e) ( ~ ( r ( m ) + t a ) ~ ( r ( n ) + t : ) ) = _  e ] , l - - , 2 + ( m - -  , 

75 c 

The second moment of the effective noise is thus 

(40) 

T T 

;o ;o ,2, (~1i(m) ~l:(n)) = dtl dt2 • Gi~(T, 

Dkt ~) X - -  e - I t l - t 2 + ( m -  TI/rc+ O ( e )  

"C c 
(41) 

The mean is calculated in a similar manner, From Eq. (38) we see that 
the mean of ~(r(rn)+ t) requires the average (~(t')(r(m))~). Since r(m) is 
deterministic at first order, the lowest order contribution comes from a 
single sl and is O(e): 

(~(t')('c(m)) ~) = ecr ~-~ S(m, t') + O((~ 2)  (42) 

where S(m, t') is the vector 

m--1  

S,(m,t')=- ~ (~ i ( t ' ) s l (n) )  
n = 0  

= dt" Gj~(T, t ')  Di---~ke-I"-c'-"rl/~' 
If(~,(to))l n=o ~c 

n - - 1  

+ ~ A T ,  O) F~ [a• 
p = O  

x f ~  dt"  GIm(T,.L t") Dtme, c , t '  t " - - ( n  p--1)TI/r, ] (43) 

The sum over c~ from Eq. (38) may be carried out, resulting in i(.oe immT. The 
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factor of ico is now rewritten as a time derivative and the remaining ~0 
integral is seen to be the delta function. The mean of r + t) is thus 

d 
( ~(r(m) + t) ) = 5 ~ S(m, t + mT) + 0(8 2) (44) 

The average of the first-order effective noise is 

fo ~ d (~ l (m) )  = 5  dt G• t ) . ~ S ( m ,  t + m T ) +  0(82) (45) 

and is O(8). Thus, an 0(5) zero mean noise process in an SDE is trans- 
formed under the construction of a return map into an O(5) effective noise 
process with a nonzero 0(52) mean and an 0(8) rms amplitude. 

We now consider the case % ~ 0(5). The term given by Eq. (40) is still 
present, but is now O(8 1). In addition, there are terms which depend on 
the mean square of the noise through (~S lS l ) .  These terms have an 
explicit factor of 52 , and were previously ignored as being higher order. 
Now, however, the dependence on rc can cancel the explicit factor of 52. If 
one assumes that these terms are higher order, one can solve for them 
explicitly by iterating the assumed lowest order solution, Eq. (40). One 
finds that there are terms which contain factors of 1/v~, which do indeed 
cancel the 82 , rendering the iteration scheme invalid. In this case we cannot 
express the lowest order part of the mean square of ~(~(m) + t) in closed 
form. As in the previous case, the mean depends on the mean square; thus, 
the mean also cannot be written in closed form. The term given by Eq. (45) 
will still contribute to the mean, however, and is O(~). Thus, the mean first- 
order effective noise is at least 0(5). 

4. A M O D E L  D Y N A M I C A L  S Y S T E M  

We now apply the method described in the previous section to a 
model dynamical system. To first order, the only information needed about 
the deterministic dynamics is the Green's matrix G(t, t') obtained by 
solving the linearized ODE. At successively higher order one needs to 
know the Jacobian matrix J(t), then the tensor of second derivatives, etc., 
all of which can be calculated directly from the velocity vector field f(x). 
One of the simplest dynamical systems containing a limit cycle is a two- 
dimensional set of ODEs which decouple into radial and angular com- 
ponents. The model considered below differs from this simple case in that 
the angular frequency depends on the radius, causing deviations from solid- 
body rotation. While the model is most intuitively defined in polar Coot- 



Stochastic Return Map 877 

dinates, the calculation is carried out in Cartesian coordinates, where the 
noise process is defined. The noise process in the SDE is isotropic additive 
Gaussian colored noise: 

(~( t ) )  = O, (r ~j(t ' ))  = (c$ij/r<) e x p ( - I t -  t'l/~<.) (46) 

In polar coordinates the deterministic system is 

~ = r - r  l-x,  2 < 0  

0 = coo + co(r), co( l )=0  
(47) 

which contains a limit cycle with unit radius and constant angular velocity 
~Oo = 2rt/T. In Cartesian coordinates the limit cycle is 

F=~(yx(t)~-~(c~176176 (48) 
I.\yy(t)) J - ( \ s i n  O)otJ) 

and the unit vector tangent to F is 

v(t)= 
\ ~x(t) ) 

(49) 

The exponent 2 is the radial eigenvalue and is negative, as F is assumed to 
be locally stable. Since Eq. (47) has circular symmetry, to may be set to 
zero. The Green's matrix is most easily found by integrating the linearized 
form of Eq. (47) and then transforming to Cartesian coordinates, resulting 
in 

Gu(t, t') = e x(t-'')Ti(t) 7j(t') + v,(t) vj(t') 

+ ---~--~c~ (eXit_,,) - l) vi(t ) 7s(t') (50) 

From Eq. (26) the first-order effective noise is 

ffli(m) = dte;'(v-'~yi(O) Tj( t)~j(r(m)+t)  (51) 

It is straightforward to use the results of the previous section to 
calculate the lowest order parts of the first two moments of ~i for the case 
r c ~O(1).  The mean (~l (m))  depends explicitly on m, while the mean 
square (~1(m)~l(n)) depends only on the difference fm-n l .  We shall 
examine the equilibrium behavior of the mean, i.e., the limit of large m. 
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While this restriction is not necessary for the calculation, it simplifies the 
resulting formulas considerably. The mean of the first-order effective noise 
is then 

lim (r  =w(O)  C(e-T/*c--e at) (52) 
m ~  oo 

where 

1 [ r 1 - ,~2z2 + COot ~2  2 
2 2[_(1 ;~%)2 2 2 C (1+2%)2+~Oo% - +r ~o02 

1 c0 , (1 )1+2% + 2 2 
2 2 f~O 0 ~. 1 + COo% 

It is interesting to look at the factors which determine the sign of the 
mean. When the local rotation rate is independent of the radius, co'(1)= 0, 
the sign of ( 5 , )  is identical to the sign of 1 /%+2.  Thus, for e ) ' (1)=0,  the 
effective noise tends to push the system to the interior (exterior) of F when 
the correlation time of the original noise process is larger (smaller) than the 
deterministic decay time for contraction onto F. Further, for fixed 2 and r~, 
there is a value of e)'(1) for which the sign of ( ~ )  changes to the opposite 
of that at os  This value is determined by solving C = 0  for e)'(1), 
and depends on too, 2, and % in a complex manner. For  all co'(1), the 
lowest order contribution to the mean effective noise is zero when 
1 / %  = 121. 

The covariance of the effective noise is 

7;(o)  ~j(o)  
( ~ i i ( m ) ~ l j ( m ) ) - - ( 1  /~2z.2)2_~ 2 2  ~2T2 ) 4 4  - 2c%%(1 + +~Oo% 

I 1  2 2  2 2  
--)~ Zcq-O)OZc (e 2"~T- 1) 

• 2 

~ 2,.C 2 2 2 ()--l/zc)T 1 ) ]  +L.(1 - ~ - ~% % )( 2e  ~ - -  e 2"a'T - 

and is independent of m. When m # n the second moment is 

(54) 

( ~ j i ( m )  (l j(n)> = e km nlr/,CTi(0 ) 7+(0) 

re(1 2 2  2 2 __ __ (O0~ c) ~, z c 
X 2 2 (1 - -  ~.2T2)2 d- 2(.00"~c(1 -~- .,t2"~c2 ) c  ~_ (D0Z c 4  4 

• (e~;.+ l /~c~r+ e~;.-  1/~c)T_ eZ2T 1) (55) 

and depends on m and n only through their difference I m -  n]. Thus, unlike 
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the mean, the second moment of the effective noise is stationary. Another 
difference from the mean is that the second moment is independent of 
co'(1). Notice that the limit n ~ m of Eq. (55) is not Eq. (54). The difference 
is due to the absolute value in the exponent of Eq. (41), and the restriction 
that m, n take integer values. When m = n, t 1 - t  2 + ( m -  n ) T  changes sign 
along the line tl = t2, which is in the region of integration. The integration 
must be broken into two regions, t l > t 2  and t 1 < t 2, and one obtains 
boundary terms on t l= t  2. When m#n ,  t l - t z + ( m - n ) T  is nonzero 
throughout the region of integration and no such boundary terms appear. 

5. C O N C L U S I O N S  

For an autonomous SDE with small-amplitude additive Gaussian 
colored noise containing a locally stable limit cycle it is possible to 
calculate a local stochastic return map provided the correlation time of the 
noise is O(e) or O(1). The effective noise in the resulting return map has 
nonzero mean and is state dependent. As seen in a simple model dynamical 
system, the properties of the effective noise depend in a complex manner on 
both the local deterministic dynamics and the details of the original noise 
process. Even in this simple dynamical system the effective noise has non- 
zero mean and the system tends to be pushed away from the deterministic 
limit cycle, a tendency which is balanced by the deterministic contraction. 

Although the return map is not the only map that may be 
constructed/21) we believe that for processes driven by colored noise it is 
the most useful. We note, however, that when the noise at the SDE level 
is Gaussian white noise, the time-T map, appropriately defined, also has a 
number of useful properties. (25'26~ Since colored noise may be thought of as 
the output of a Langevin equation with Gaussian white noise, the latter 
approach is available at the cost of increasing the dimension of the system. 

APPENDIX.  M A G N I T U D E  OF AN INTEGRAL WITH A 
STOCHASTIC  B O U N D  

The first integral in Eq. (29), to be called I, is a stochastic vector with 
stochastic variables in both the upper bound and the integrand: 

f T + ~Sl foSl I, =_ dt ~i(t)= dt ~i(T+ t) (56) 
T 

With the help of the Heaviside step function O(t) and its integral represen- 
tation 

1 fc ei~ O(t) = ~ i  do co (57) 
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we transfer the stochastic upper bound to the integrand. Here the contour 
C is the real co axis from - oo to o% except at m = 0, where C goes around 
the pole with Ira(co)< 0. There are two terms I+ and I _ ,  as s~ may be 
either positive or negative: 

-O c~5 l= Y~ dt ~(T+ t) O(,r(es~ - t)) 
o'=• 

~ -  Z L (58) 
a~• 

The first-order correction to the intersection time s~. has a deter- 
ministic part g~ and a stochastic part s] given by Eq. (19). Substituting the 
integral representation of O(t) and expanding the exponential of s'~ results 
in 

[~ = ~ dt dco n! CO n=O 
- -  (s;)" ~ ( T +  t) (59) 

The average of I~ now depends on the average of (s'~)" ~ (T+  t): 

) _ ~n!! A ( ' -  1)/2Bi(t), n odd 
((s'i) ~ ~ i (T+  t) - (0, n even (60) 

where 

A - ( (s'~) 2 ) 

=f~a t~ f :d t~  vi(t~ vj(t~ G~k(T, t~) GjI(T, t2) Dkte-I"-~21/~,. 
}f(y(to))} 2 % 

(6~) 

and 

f :  --vJ(t~ Gjk(T, t l )D ike  - ! " - r - ' l / ~  
= dt, If(~'(to))l r~ 

(62) 

For  n odd, n = 2 m +  1, n!!/n! = (1/2ram!), and we obtain 

s fc ei~a(~Sl-t) ~ (iccoff)2m+lAm 
_ I _  dt dco B(t)  2,~m ! 

( I ~ )  - 2 ~ i  o co m=o 

~d" fo-oo 
= dt ~ do) e '~(~1 - ~ -e2~)zA/2B(t) 

:o Jc 
(63) 
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There is no longer a pole in the co integral and the integral over C becomes 
the Fourier transform, yielding 

( I . )  - (2teA)l/~ dt B(t)e -(~sl-')2/2ezA (64) 

Finally, summing over a gives the average of I: 

( I i )  (2~A)1/2 - ~  dt B~(t)e -(~s~-t?/z~2A (65) 

A similar calculation gives the mean square of I: 

(Iilj) -- (2~g2A) 1/22D0 f~oo dt[ltl + ro(e - Itj/~- 1)]e (~:gl ')2/2~:2A 

+ A (2rce2A)1/2 :o dt(t - es )e-(,x,- t)2/2e2A 

x dt'[B,(t) Bj(t') + Bs(t) B,(t ')] (66) 

We can now estimate the size of I by examining the equations for the 
average and mean square of / ,  Eq. (65) and (66), respectively. The constant 
A, defined in Eq. (61), is, apart from the O(1) vector v/lfl,  the mean square 
of the first integral in Eq.(8). As this integral is O(1), A~O(1) .  The 
integrals in ( I ) ,  (12)  ranging from negative to positive infinity contain 
Gaussians with exponent - ( e g l -  t)z/2e2A; since Sl ,-~O(1), the integrals 
are only appreciable when t ~ e. By replacing the Gaussians with a function 
which is one on t ~ ( e s  1 - e, ~s1  "~- e )  and zero elsewhere, we obtain 

( I )  ~ dt B(t) (67) 
Sl --  e 

and 

1 f[~t+~ dt[ltl + %(e -m'l/*~- 1)3 ( I2 )~7  , ,~ 

+ - d t ( t -  esl) d t ' ( B ( t )  a ( / ' ) ) s y  m (68) 

where (.)syrn is the symmetric product in Eq. (66). 
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The magnitude of ( I )  depends on the magnitude of B. From the 
definition of B, Eq. (62), we see that 

B ( t ) ~ - -  dt~ e-I,~- r ,I/~c (69) 
"Cc 

Integration of (69) yields B ( t ) ~  O(1) for - T <  t < 0; B(t) decays exponen- 
tially to zero when t is outside this interval with decay time re. When 
r ~ O ( 1 ) ,  B ( t ) ~ O ( 1 )  over the range of integration in (67) and 
( I ) ~ O ( e ) .  When % ~ 0 ( ~ )  or smaller, B(t) may or may not be 
appreciable in the region of integration. In this case the magnitude of ( I )  
depends on the details of gl, A, and other O(1) quantities which were 
previously dropped; we can say, however, that ( I ) ~  O(a) or smaller. 

The expression (68) for ( I  2) contains two terms. Since t ~  O(e), the 
magnitude of the integrand in the first term depends on %: 

Itl +"c~,(e - t ' l / ~ -  1)~ c~ltl 2, 
[Itl,  

% N O ( l )  
(70) 

rc ~ O(e) or smaller 

The first term is therefore O(~ 2) if % ~ O ( 1 ) ,  and O(e) if r e d O ( e )  or 
smaller. From the above discussion of B, the second term is seen to be 
O(e 2) or smaller for all %. Thus, ( I 2 ) ~ O ( e  2) when r e ~ O ( 1 ) ,  and 
( i 2 )  ~ O(e) when rc ~ O(e) or smaller. 

When rc ~ O(1), I has an O(e) average and rms deviation; hence the 
magnitude of I is O(e). When zc ~ O(e) or smaller the rms deviation of I 
is O(~ 1/2) and much larger than the O(e) mean; the magnitude of I is now 
given by its rms deviation. Thus, 

~'O(a), r~ N O ( l )  (71) 
/ '~ [o(el/2), r c ~ O(e) or smaller 

The magnitudes above are the same as those of an integral similar to I but 
containing deterministic bounds, ~ dt ~(t). 
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